miro_api.models.data_classification_label
Miro Developer Platform
### Miro Developer Platform concepts - New to the Miro Developer Platform? Interested in learning more about platform concepts?? Read our introduction page and familiarize yourself with the Miro Developer Platform capabilities in a few minutes. ### Getting started with the Miro REST API - Quickstart (video): try the REST API in less than 3 minutes. - Quickstart (article): get started and try the REST API in less than 3 minutes. ### Miro REST API tutorials Check out our how-to articles with step-by-step instructions and code examples so you can: - Get started with OAuth 2.0 and Miro ### Miro App Examples Clone our Miro App Examples repository to get inspiration, customize, and explore apps built on top of Miro's Developer Platform 2.0.
The version of the OpenAPI document: v2.0 Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
1# coding: utf-8 2 3""" 4Miro Developer Platform 5 6<img src=\"https://content.pstmn.io/47449ea6-0ef7-4af2-bac1-e58a70e61c58/aW1hZ2UucG5n\" width=\"1685\" height=\"593\"> ### Miro Developer Platform concepts - New to the Miro Developer Platform? Interested in learning more about platform concepts?? [Read our introduction page](https://beta.developers.miro.com/docs/introduction) and familiarize yourself with the Miro Developer Platform capabilities in a few minutes. ### Getting started with the Miro REST API - [Quickstart (video):](https://beta.developers.miro.com/docs/try-out-the-rest-api-in-less-than-3-minutes) try the REST API in less than 3 minutes. - [Quickstart (article):](https://beta.developers.miro.com/docs/build-your-first-hello-world-app-1) get started and try the REST API in less than 3 minutes. ### Miro REST API tutorials Check out our how-to articles with step-by-step instructions and code examples so you can: - [Get started with OAuth 2.0 and Miro](https://beta.developers.miro.com/docs/getting-started-with-oauth) ### Miro App Examples Clone our [Miro App Examples repository](https://github.com/miroapp/app-examples) to get inspiration, customize, and explore apps built on top of Miro's Developer Platform 2.0. 7 8The version of the OpenAPI document: v2.0 9Generated by OpenAPI Generator (https://openapi-generator.tech) 10 11Do not edit the class manually. 12""" # noqa: E501 13 14 15from __future__ import annotations 16import pprint 17import re # noqa: F401 18import json 19 20from pydantic import BaseModel, Field, StrictBool, StrictInt, StrictStr 21from typing import Any, ClassVar, Dict, List, Optional 22from typing import Optional, Set 23from typing_extensions import Self 24 25 26class DataClassificationLabel(BaseModel): 27 """ 28 Data classification label 29 """ # noqa: E501 30 31 id: Optional[StrictStr] = Field(default=None, description="Label id.") 32 color: Optional[StrictStr] = Field(default=None, description="Label color.") 33 default: Optional[StrictBool] = Field(default=None, description="Label is default.") 34 description: Optional[StrictStr] = Field(default=None, description="Label description.") 35 name: Optional[StrictStr] = Field(default=None, description="Label name.") 36 order_number: Optional[StrictInt] = Field(default=None, description="Label order number.", alias="orderNumber") 37 sharing_recommendation: Optional[StrictStr] = Field( 38 default=None, 39 description="Sharing Recommendation (one of NO_SHARING_RESTRICTIONS, ONLY_WITHIN_ORGANIZATION, ONLY_WITHIN_TEAM or ONLY_WITH_AUTHORIZED_TEAM_MEMBERS ).", 40 alias="sharingRecommendation", 41 ) 42 guideline_url: Optional[StrictStr] = Field( 43 default=None, 44 description="Indicates the URL for the board classification label guidelines.", 45 alias="guidelineUrl", 46 ) 47 type: Optional[StrictStr] = Field(default="data-classification-label", description="Type of the object returned.") 48 additional_properties: Dict[str, Any] = {} 49 __properties: ClassVar[List[str]] = [ 50 "id", 51 "color", 52 "default", 53 "description", 54 "name", 55 "orderNumber", 56 "sharingRecommendation", 57 "guidelineUrl", 58 "type", 59 ] 60 61 model_config = { 62 "populate_by_name": True, 63 "validate_assignment": True, 64 "protected_namespaces": (), 65 } 66 67 def to_str(self) -> str: 68 """Returns the string representation of the model using alias""" 69 return pprint.pformat(self.model_dump(by_alias=True)) 70 71 def to_json(self) -> str: 72 """Returns the JSON representation of the model using alias""" 73 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 74 return json.dumps(self.to_dict()) 75 76 @classmethod 77 def from_json(cls, json_str: str) -> Optional[Self]: 78 """Create an instance of DataClassificationLabel from a JSON string""" 79 return cls.from_dict(json.loads(json_str)) 80 81 def to_dict(self) -> Dict[str, Any]: 82 """Return the dictionary representation of the model using alias. 83 84 This has the following differences from calling pydantic's 85 `self.model_dump(by_alias=True)`: 86 87 * `None` is only added to the output dict for nullable fields that 88 were set at model initialization. Other fields with value `None` 89 are ignored. 90 * Fields in `self.additional_properties` are added to the output dict. 91 """ 92 excluded_fields: Set[str] = set( 93 [ 94 "additional_properties", 95 ] 96 ) 97 98 _dict = self.model_dump( 99 by_alias=True, 100 exclude=excluded_fields, 101 exclude_none=True, 102 ) 103 # puts key-value pairs in additional_properties in the top level 104 if self.additional_properties is not None: 105 for _key, _value in self.additional_properties.items(): 106 _dict[_key] = _value 107 108 return _dict 109 110 @classmethod 111 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 112 """Create an instance of DataClassificationLabel from a dict""" 113 if obj is None: 114 return None 115 116 if not isinstance(obj, dict): 117 return cls.model_validate(obj) 118 119 _obj = cls.model_validate( 120 { 121 "id": obj.get("id"), 122 "color": obj.get("color"), 123 "default": obj.get("default"), 124 "description": obj.get("description"), 125 "name": obj.get("name"), 126 "orderNumber": obj.get("orderNumber"), 127 "sharingRecommendation": obj.get("sharingRecommendation"), 128 "guidelineUrl": obj.get("guidelineUrl"), 129 "type": obj.get("type") if obj.get("type") is not None else "data-classification-label", 130 } 131 ) 132 # store additional fields in additional_properties 133 for _key in obj.keys(): 134 if _key not in cls.__properties: 135 _obj.additional_properties[_key] = obj.get(_key) 136 137 return _obj
27class DataClassificationLabel(BaseModel): 28 """ 29 Data classification label 30 """ # noqa: E501 31 32 id: Optional[StrictStr] = Field(default=None, description="Label id.") 33 color: Optional[StrictStr] = Field(default=None, description="Label color.") 34 default: Optional[StrictBool] = Field(default=None, description="Label is default.") 35 description: Optional[StrictStr] = Field(default=None, description="Label description.") 36 name: Optional[StrictStr] = Field(default=None, description="Label name.") 37 order_number: Optional[StrictInt] = Field(default=None, description="Label order number.", alias="orderNumber") 38 sharing_recommendation: Optional[StrictStr] = Field( 39 default=None, 40 description="Sharing Recommendation (one of NO_SHARING_RESTRICTIONS, ONLY_WITHIN_ORGANIZATION, ONLY_WITHIN_TEAM or ONLY_WITH_AUTHORIZED_TEAM_MEMBERS ).", 41 alias="sharingRecommendation", 42 ) 43 guideline_url: Optional[StrictStr] = Field( 44 default=None, 45 description="Indicates the URL for the board classification label guidelines.", 46 alias="guidelineUrl", 47 ) 48 type: Optional[StrictStr] = Field(default="data-classification-label", description="Type of the object returned.") 49 additional_properties: Dict[str, Any] = {} 50 __properties: ClassVar[List[str]] = [ 51 "id", 52 "color", 53 "default", 54 "description", 55 "name", 56 "orderNumber", 57 "sharingRecommendation", 58 "guidelineUrl", 59 "type", 60 ] 61 62 model_config = { 63 "populate_by_name": True, 64 "validate_assignment": True, 65 "protected_namespaces": (), 66 } 67 68 def to_str(self) -> str: 69 """Returns the string representation of the model using alias""" 70 return pprint.pformat(self.model_dump(by_alias=True)) 71 72 def to_json(self) -> str: 73 """Returns the JSON representation of the model using alias""" 74 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 75 return json.dumps(self.to_dict()) 76 77 @classmethod 78 def from_json(cls, json_str: str) -> Optional[Self]: 79 """Create an instance of DataClassificationLabel from a JSON string""" 80 return cls.from_dict(json.loads(json_str)) 81 82 def to_dict(self) -> Dict[str, Any]: 83 """Return the dictionary representation of the model using alias. 84 85 This has the following differences from calling pydantic's 86 `self.model_dump(by_alias=True)`: 87 88 * `None` is only added to the output dict for nullable fields that 89 were set at model initialization. Other fields with value `None` 90 are ignored. 91 * Fields in `self.additional_properties` are added to the output dict. 92 """ 93 excluded_fields: Set[str] = set( 94 [ 95 "additional_properties", 96 ] 97 ) 98 99 _dict = self.model_dump( 100 by_alias=True, 101 exclude=excluded_fields, 102 exclude_none=True, 103 ) 104 # puts key-value pairs in additional_properties in the top level 105 if self.additional_properties is not None: 106 for _key, _value in self.additional_properties.items(): 107 _dict[_key] = _value 108 109 return _dict 110 111 @classmethod 112 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 113 """Create an instance of DataClassificationLabel from a dict""" 114 if obj is None: 115 return None 116 117 if not isinstance(obj, dict): 118 return cls.model_validate(obj) 119 120 _obj = cls.model_validate( 121 { 122 "id": obj.get("id"), 123 "color": obj.get("color"), 124 "default": obj.get("default"), 125 "description": obj.get("description"), 126 "name": obj.get("name"), 127 "orderNumber": obj.get("orderNumber"), 128 "sharingRecommendation": obj.get("sharingRecommendation"), 129 "guidelineUrl": obj.get("guidelineUrl"), 130 "type": obj.get("type") if obj.get("type") is not None else "data-classification-label", 131 } 132 ) 133 # store additional fields in additional_properties 134 for _key in obj.keys(): 135 if _key not in cls.__properties: 136 _obj.additional_properties[_key] = obj.get(_key) 137 138 return _obj
Data classification label
68 def to_str(self) -> str: 69 """Returns the string representation of the model using alias""" 70 return pprint.pformat(self.model_dump(by_alias=True))
Returns the string representation of the model using alias
72 def to_json(self) -> str: 73 """Returns the JSON representation of the model using alias""" 74 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 75 return json.dumps(self.to_dict())
Returns the JSON representation of the model using alias
77 @classmethod 78 def from_json(cls, json_str: str) -> Optional[Self]: 79 """Create an instance of DataClassificationLabel from a JSON string""" 80 return cls.from_dict(json.loads(json_str))
Create an instance of DataClassificationLabel from a JSON string
82 def to_dict(self) -> Dict[str, Any]: 83 """Return the dictionary representation of the model using alias. 84 85 This has the following differences from calling pydantic's 86 `self.model_dump(by_alias=True)`: 87 88 * `None` is only added to the output dict for nullable fields that 89 were set at model initialization. Other fields with value `None` 90 are ignored. 91 * Fields in `self.additional_properties` are added to the output dict. 92 """ 93 excluded_fields: Set[str] = set( 94 [ 95 "additional_properties", 96 ] 97 ) 98 99 _dict = self.model_dump( 100 by_alias=True, 101 exclude=excluded_fields, 102 exclude_none=True, 103 ) 104 # puts key-value pairs in additional_properties in the top level 105 if self.additional_properties is not None: 106 for _key, _value in self.additional_properties.items(): 107 _dict[_key] = _value 108 109 return _dict
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
self.model_dump(by_alias=True)
:
None
is only added to the output dict for nullable fields that were set at model initialization. Other fields with valueNone
are ignored.- Fields in
self.additional_properties
are added to the output dict.
111 @classmethod 112 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 113 """Create an instance of DataClassificationLabel from a dict""" 114 if obj is None: 115 return None 116 117 if not isinstance(obj, dict): 118 return cls.model_validate(obj) 119 120 _obj = cls.model_validate( 121 { 122 "id": obj.get("id"), 123 "color": obj.get("color"), 124 "default": obj.get("default"), 125 "description": obj.get("description"), 126 "name": obj.get("name"), 127 "orderNumber": obj.get("orderNumber"), 128 "sharingRecommendation": obj.get("sharingRecommendation"), 129 "guidelineUrl": obj.get("guidelineUrl"), 130 "type": obj.get("type") if obj.get("type") is not None else "data-classification-label", 131 } 132 ) 133 # store additional fields in additional_properties 134 for _key in obj.keys(): 135 if _key not in cls.__properties: 136 _obj.additional_properties[_key] = obj.get(_key) 137 138 return _obj
Create an instance of DataClassificationLabel from a dict
265def init_private_attributes(self: BaseModel, __context: Any) -> None: 266 """This function is meant to behave like a BaseModel method to initialise private attributes. 267 268 It takes context as an argument since that's what pydantic-core passes when calling it. 269 270 Args: 271 self: The BaseModel instance. 272 __context: The context. 273 """ 274 if getattr(self, '__pydantic_private__', None) is None: 275 pydantic_private = {} 276 for name, private_attr in self.__private_attributes__.items(): 277 default = private_attr.get_default() 278 if default is not PydanticUndefined: 279 pydantic_private[name] = default 280 object_setattr(self, '__pydantic_private__', pydantic_private)
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Args: self: The BaseModel instance. __context: The context.
Inherited Members
- pydantic.main.BaseModel
- BaseModel
- model_extra
- model_fields_set
- model_construct
- model_copy
- model_dump
- model_dump_json
- model_json_schema
- model_parametrized_name
- model_rebuild
- model_validate
- model_validate_json
- model_validate_strings
- dict
- json
- parse_obj
- parse_raw
- parse_file
- from_orm
- construct
- copy
- schema
- schema_json
- validate
- update_forward_refs